Strategic Foresight Peru

Felipe Valentin Foresight Specialist August 2024

National Development Strategic Plan (PEDN) to 2050

Constitution of

Peru

Visión del Perú al 2050

Vision Peru 2050

National Agreement

Agenda 2030

National Strategic Development Plan to 2021

PEDN 2050

+ STI

+ digital transformation

People development

Sustainable territory

9 Guidelines 4 National Goals

cooperation

peace

National System for Science, Technology and Innovation SINACTI

Strategy Definition

Implementation

UNIVERSITIES

Peru's National Technology Roadmap

K-Innovation Program

Implementation

Team building: Korea-Peru experts Technology Forecasting

Year 1

02

Engaging local experts
Technology Roadmap: Stage 1

Year 2

03

Technology Roadmap: Stage 2
Institutionalizing innovation programs

Year 3

Timelines

2022.06~09.

2022.10~11.

2023.03~08.

2023.09~10.

2024.07~08.

2024.09~12.

Team

Peru-Korea experts formed a team: Theories, Case studies

Forecasting

Peru experts developed six tech. forecasting reports.

Delphi

Peru's TRM committee conducted the Delphi survey.

Analysis

Peru-Korea experts developed the (draft) national tech. roadmap.

Delphi 2

Second round – Delphi. Consensus

i-Programs

Peru-Korea experts developed the innovation

Key Figures

+4

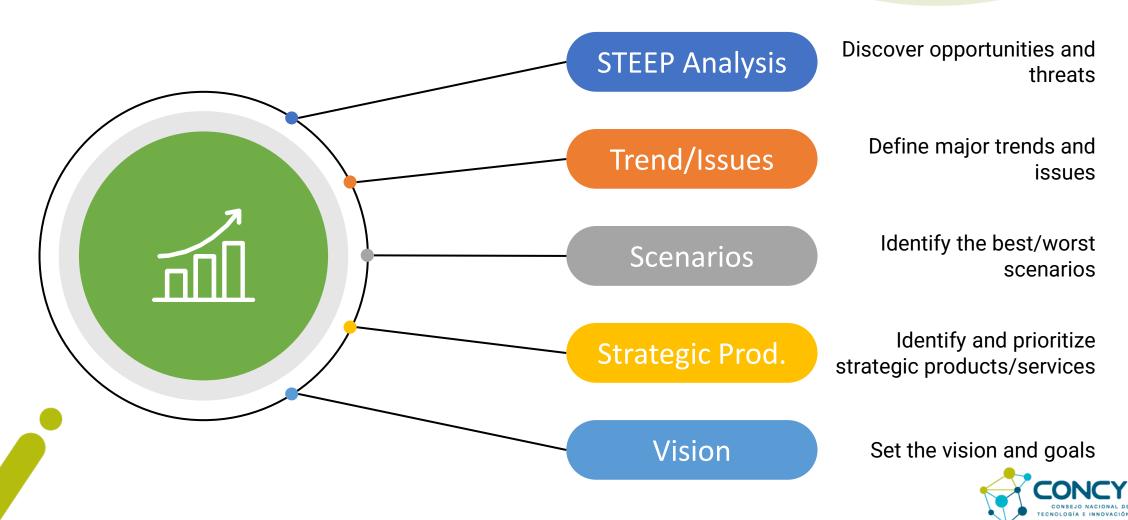
Workshops

25

Industry Leaders

+270

Experts



YEAR 1. (2022) Technology Forecasting

Tech. Forecasting Process (2022)

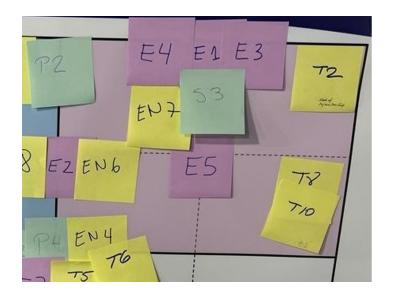
STEEP Analysis

Identify drivers

Social	S1: Demographics S2: capacity
Techological	T1: Clean material T2: Industry 4.0, Biotech, T3: R&D
Economical	E1: Foreign investment E2: Labor cost
Environmental	En1: Climate change En2: Friendly materials
Political	P1: Insitutional instability P2: Gov incentive P3: IP, right & patents

Assess impact x uncertainty

Rank the drivers


Trend/Issues

Key axes of Uncertainty

Identify Trends/Issues

High uncertainty, High impact

Find common trends or issues

T8. Mining without water T10.Reprocessing mining waste

T5. Cleaner production

T6. Energy efficiency

Innovation in extraction process

Strategies

Strategies	Opportunities / Threats		
Adopt Industry 4.0 technologies, integrate supply chain.	Improved efficiency, quality, flexibility / significant investment needed, potential threat of new foreign competitors.		
Implement flexible labor laws, promote formality	 Increased productivity and benefits and protection to workers/ possible abuse of flexibility 		
Research, manage and adapt new technology	Early adoption of new technologies/ obsolete technology compared to foreign competitors.		
 Formalization, investment in technology, training programs, access to credit, reduced logistics costs 	 Increased access to finance, better working conditions/ resistance from informals and potential threat of foreign workforce. 		
Align study plans to industry needs, increase internships, coordinate academia-industry	Prepared workforce for tech adoption/ interinstitutional coordination needed		

Key Technologies

Textile & Apparel Manufacturing & Digital Design

Textile and Apparel manufacturing

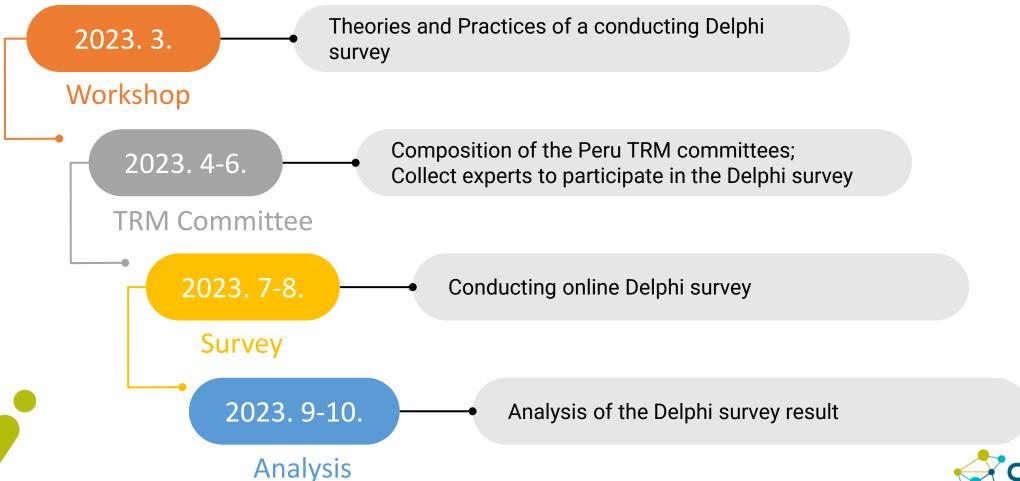
Textile Materials

Logistics

manufacturing & **Logistics**

Vision Statement

Scenario Writing A (Best)		Scenario Description				
Scenario Title	Key axes of uncertainty	to 2030	to 2040	to 2050		
Peru emerging as a textile and apparel superpower in 2050	Flexible labor laws	Initial labor regulation reforms Expanded flexibility and formalization		Optimal flexibility achieved		
	Investment promotion	Emergence of startups	Significant investment growth.	Widespread adoption of new technologies		
	Abundance of human resources	Increased training programs	Highly skilled workforce	Optimized innovation ecosystem		
	Complete new tech and materials expertise	Pilot projects	Advancement in materials and digitization	Global leadership in materials and exports		



YEAR 2. (2023) Delphi Survey

Delphi Survey Process (2023)

Workshop (exercise)

TRM Committee

Agribusiness 66

Forestry 24

Mining & Materials 47

Textile & Apparel 47

Advanced Manufacturing 47

Creative Industry 39

Survey

- ✓ 270 Peruvian experts
- **✓** 2023. 7. 10 ~ 8. 15.

Online (google form)

Technology Assessment

- Economic importance
- HR
- **In**frastructure

Investment

Technology Readiness

- Leading economy
- Time of realization: L. economy & Peru

Policy Measures

- Infrastructure
- Manpower
- Investment
- Cooperation
- Deregulation

Investment Priority

- Domestic R&D
- Intl. R&D
- Licensing

Findings

Confident in R&D

Mining (exp. Clean production)

Textile (all)

Agri > Food Processing

Underrated industries

Advanced Manufacturing
Creative Industry
Textile/Food Manufacturing

Strategic partners

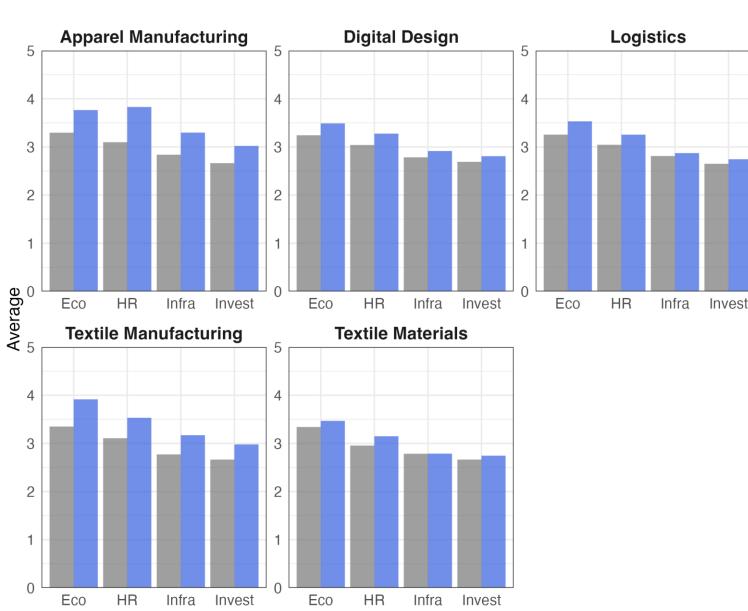
US/EU: Mining and Materials, Creative industry, Agribusiness E.Asia: Adv. Manufacturing, Textile & Apparel

Policy Priority

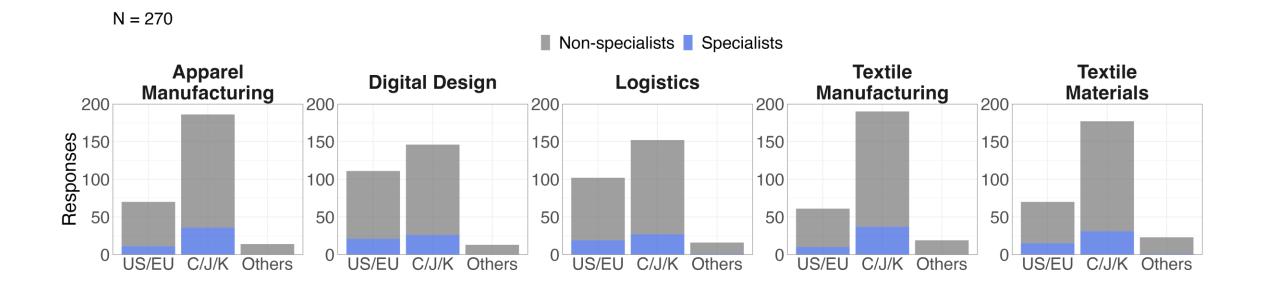
Infrastructure: Mining and materials, Forestry,
Agribusiness
HR: Creative industry,
R&D Investment: Textile and

apparel

Delphi Survey Textile

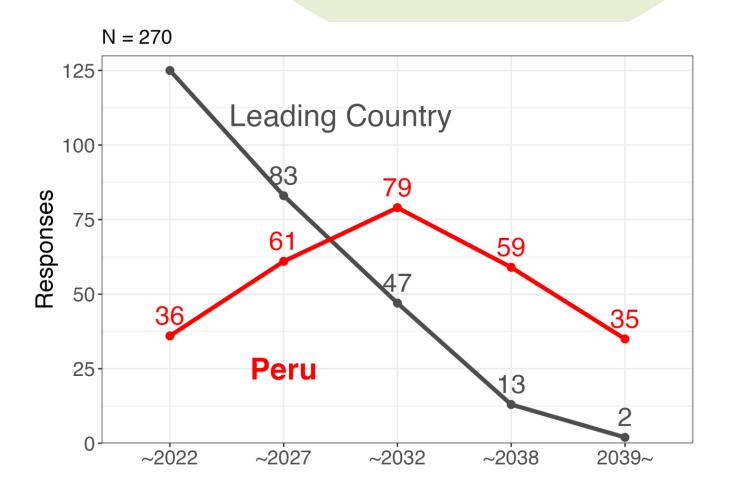

Capability assessment Leading countries Technology readiness Acquisition methods Policy measures

Capability Assessment

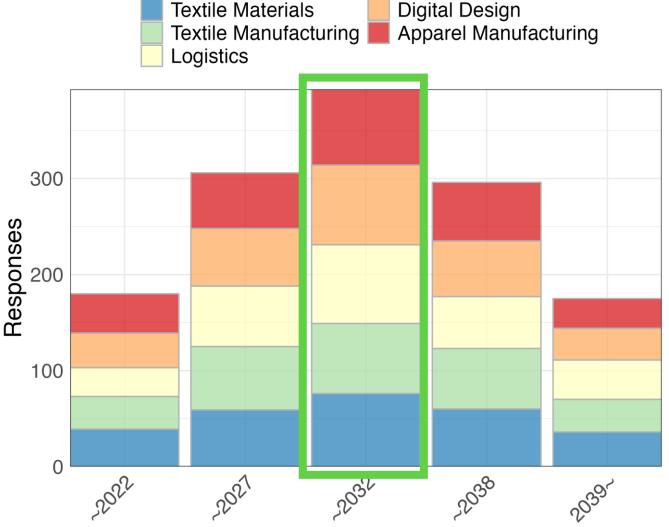

as of 2023

- Specialists of textile and apparel assess the capability higher than nonspecialists.
 - Economic importance
 - HR in R&D
 - R&D infrastructure
 - R&D investment
- The differences are consistent with statistical significance at α =.05.

Leading economy as of 2023

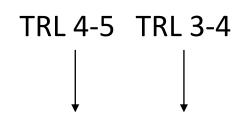

Specialists in textile and apparel acknowledge China,
 Japan, and Korea are leading the field.

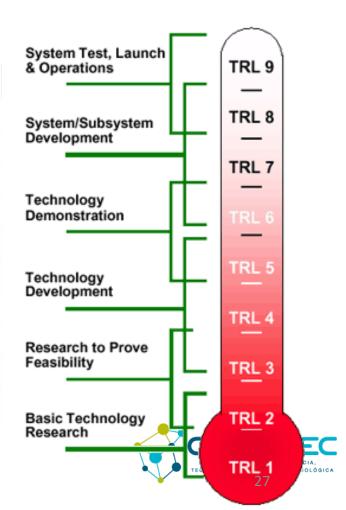
Technology Readiness


 Technology readiness in textile and apparel has an over 10-year gap compared to the leading economy.

Readiness by **Technologies**

 Apparel Manufacturing, digital design, logistics, textile manufacturing and textile materials are likely to be ready in Peru from 2032.

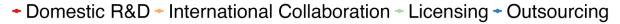

Textile Materials

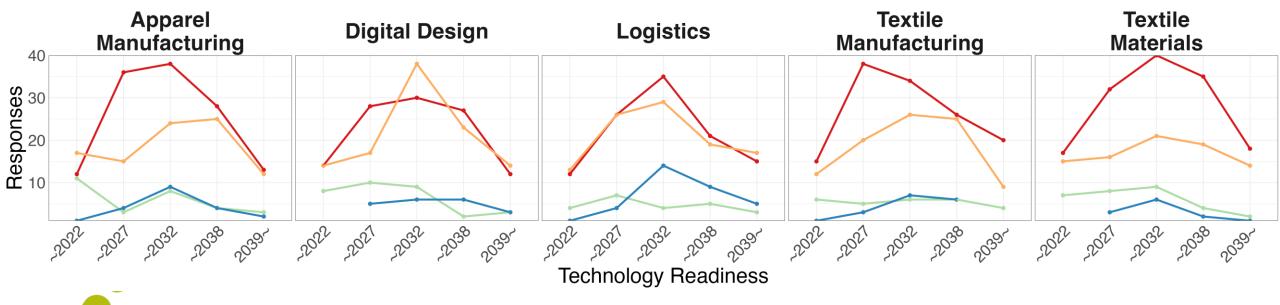

Readiness and Capability by Technologies

Technology	TRL	Economic Importance	Manpower Capability	Infra- structure	R&D Investment	Timeline
Textile Materials	TRL 3-4	**	**	**	**	Mid-term
Textile Manufacturing	TRL 4-5	***	**	**	**	Short-term
Apparel Manufacturing	TRL 3-4	***	**	**	**	Mid-term
Digital Design	TRL 3-4	**	**	**	**	Mid-term
Logistics	TRL 3-4	**	**	**	**	Mid-term

Responses by technologies & readiness

	~2022	~2027	~2032	~2038	2039~	Total
Tautila Nastaviala	39	61	77	60	37	274
Textile Materials	14%	22%	28%	22%	14%	100%
Textile	34	68	74	63	35	274
Manufacturing	12%	25%	27 %	23%	13%	100%
Apparel	41	60	80	61	32	274
Manufacturing	15%	22%	29%	22%	12%	100%
Digital Design	36	63	83	58	34	274
	13%	23%	30%	21%	12%	100%
Logistics	30	65	83	54	42	274
	11%	24%	30%	20%	15%	100%

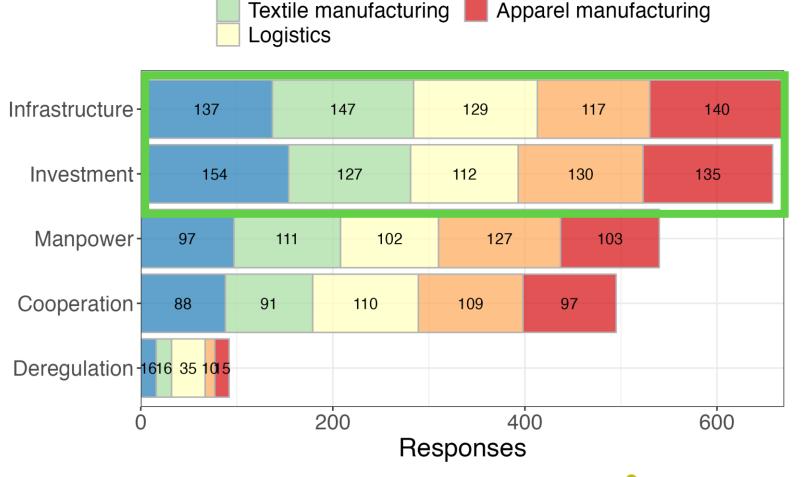

Responses by technologies & capability


- Score (weighted mean) = sum(# of responses * values
 (1~5)) / N
- *** (>= 3.0, Max 2) > ** (>=2.5) > * (<2.5)

N = 275	Economic	HR	Infrastructure	Investment
T 1'1 N4 1 ' 1	3.37	2.99	2.78	2.67
Textile Materials	**	**	**	**
Toutile N. 4 - 10 - 15 - 54 - 11 - 12 - 1	3.45	3.17	2.83	2.71
Textile Manufacturing	***	**	**	**
Apparel Manufacturing	3.38	3.22	2.91	2.72
	***	**	**	**
Digital Design	3.29	3.07	2.80	2.70
	**	**	**	**
Logistics	3.30	3.08	2.82	2.66
	**	**	**	**

Acquisition by Readiness

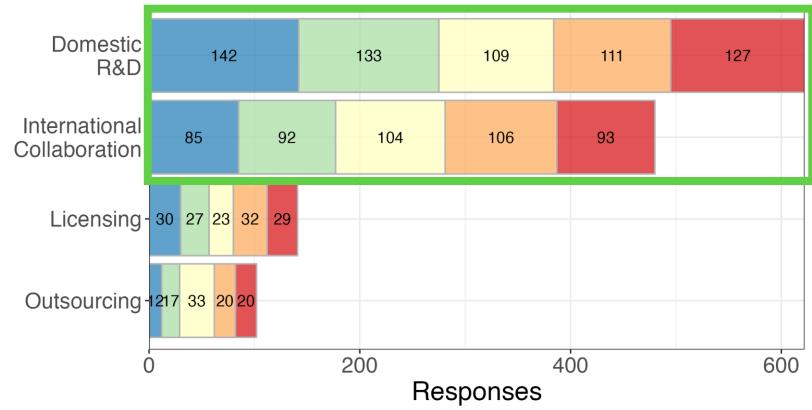
- Strong perception on achieving technologies with domestic R
 D: Apparel Manufacturing, Logistics and Textile Material Technologies in the mid term and Textile Manufacturing technologies in the short term.
- Digital Design requires international collaboration in the mid term.



Policy Measures

- Investing in infrastructure and investment expansion are the two most urgent requests for all key technologies.
- Manpower shows significant level of readiness.

Digital design


Textile material

Technology Acquisition

Technology
 acquisition through
 Domestic R & D and
 International
 Collaboration
 Investing are the two
 most urgent requests for
 all key technologies.

Technology Roadmap Textile & Apparel

recumology	Noaumap	rexule & A	pparei				
	Goal by 2035	Short (~2026)	Mid (~2030)	Long (~2035)			
Textile Materials	90% of manufacturers include new technologies	Domestic R & D	Domestic R & D	Domestic R & D			
Textile Manufacturing	80% of manufacturers adopt new technologies	Domestic R & D	Domestic R & D	Domestic R & D			
Apparel Manufacturing	80% of manufacturers adopt advanced technology	Domestic R & D	Domestic R & D	Domestic R & D			
Digital Design	80% of manufacturers adopt digital design tools	Domestic R & D	International Collaboration	Domestic R & D			
Logistics	75% of manufacturers use sophisticated systems.	Domestic R & D / International Collaboration	Domestic R & D	Domestic R & D / International Collaboration			

What to do next (2024)

01

In-depth analysis

- Text-mining
- Patent analysis

More Experts

- Identify detailed technologies
- Specify technical targets

- Run TRM sub-committee meetings
- Align top-down and bottom-up analysis

02

Implementation

- Secure budgets for action plans
- Plan and launch innovation programs

Gracias

